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Outline

e Deeply Virtual Compton Scattering(DVCS) for GPDs
* Neutral Particle Spectrometer(NPS) for DVCS experiments in Hall C
* NPS simulations and crystal optical properties



Generalized Parton Distributions

e

Form Factors: Parton distribution: Generalized Parton Distributions:

via elastic scattering via deep inelastic scattering via deep exclusive reactions

-charge & magnetization -Longitudinal momentum -Transverse position distribution of partons
spatial distribution & helicity distribution of partons to longitudinal momentum




Deeply Virtual Compton Scattering
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At high Q%, DVCS amplitudes can be factorized into 2 parts
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«Soft Part» : Nucleon structure - Parameterized by GPDs




Deeply Virtual Compton Scattering

DVCS Bethe-Heitler (BH)

O oC \BH\Z + \DVCS\2 + Interference

DVCS process and BH process entangle = Need to separate each term to extract the GPDs




Deeply Virtual Compton Scattering

DVCS Bethe-Heitler (BH)
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O oC \BH\Z + \DVCS\2 + Interference

Calculable ~1 — 1+ cos ®
from QED HOIAO)




Deeply Virtual Compton Scattering

DVCS Bethe-Heitler (BH)
° | oc (E, /V)°
At fixed Q% andv = Q?/(2Mxp)
2 2
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Calculable
from QED




Jefferson Lab.
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<<Thomas Jefferson National Accelerator Facility>>

* Newport News, Virginia, USA
* 12 GeV continuous electron beam
e Hall A, B,Cand D

- Each hall has different setups

- A : High momentum resolution

- B : High acceptance

- C: High momentum reach
-D : 12 GeV Photon beam



DVCS experiments in Hall C

12Q2 vs xg coverage in Halls A and C Need a full kinematic region to better understand
<" Hall C 11 GeV
@ [Hall C 8.8 GeV tiE EPLE
510-Hall C 6.6 GeV

Reach higher Q?

: further test the Q% dependence of the observables
Different beam energies

- separate |DVCS|?and Interference term

Reach lower value of xg
: Cross-check with CLAS, CLAS12 and COMPASS

8 Hall A 6.6 GeV
-Hall A 5.75 GeV

- —>Highest precision data in the kinematic domain
% 0.1 02 03 04 05 0.6 07 08 0.9 accessible with a 11GeV beam

Xg

<<Kinematic region accessible by JLab 11GeV beam>>



Neutral Particle Spectrometer(NPS) in Hall C

Hall C focusing spectrometers

O Neutral Particle Spectrometer replaces
one of the Hall C focusing
spectrometers in the experiments

0 HMS (existing 6 GeV era)

> Has been recommissioned for 12 GeV
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HMS : High Momentum Spectrometer
SHMS : Super High Momentum Spectrometer
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Experimental Technique

Deflection - Trigger: HMS, HMS+NPS
magnet e
e HMS: 1 MHz (max)
Electronbeam _,Q NPS: 86 MHz (max)

10cm LH2
target ;
g e

In DVCS:
HMS detects scattered electrons
NPS detects neutral particles

O NPS angle reach between 5.5 and 30 degrees

O NPS allows for precision (coincidence) cross section = E\| #ESRT NS
measurements of neutral particles (y and =9). N - B \ | '
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NPS angle range: 5.5 — 30 degrees




Neutral Particle Spectrometer(NPS

0 ~25 msr neutral particle detector consisting of ~1080 PbWO, crystals in a
temperature-controlled frame including gain monitoring and curing systems —
outer layers of 30x36 crystal matrix only to catch showers

O HV distribution bases with built-in amplifiers for operation in a high-rate
environment

U Essentially deadtime-less digitizing electronics to independently sample the
entire pulse form for each crystal — JLab-developed Flash ADCs

0 0.3Tm sweeping magnet allowing for small-angle and large angle
operation at 0.6 Tm. The magnet is compatible with existing JLab power
supplies.

Q Cantilevered platforms off the SHMS carriage to allow for remote rotation (in
the small angle range), and platforms to be on the SHMS carriage (in the
large angle range)

L A beam pipe with as large critical angle as possible to reduce beamline-
associated backgrounds — only a small section needs modification




Sweeping Magnet

e —

“NPS magnetin+test lab — ready for mapping

Highest luminosity(~1038cm~2?sec™!) of DVCS ever before Supported by NSF MRI

with smallest angle(for the high Q? data) possible 1530874: CUA (lead), OU, ODU

- Creates big amount of background to the calorimeter
- Introduce sweeping magnet to reduce the background 13




Calorimeter

Front view

Calorimeter frame:

» Crystals placed in a 0.5 mm-thick carbon
frame to ensure good positioning

> PMTs accessible from the back side to
allow maintenance

» Calibration and radiation curing with blue
LED light though quartz optical fiber

» 30x36 (1080) PbWO, crystals (2x2x20 cm3) IPN-Orsay
» Hamamatsu R4125 PMTs + NSF MRI 1530874:

» Custom-made active bases CUA (lead), OU, ODU

[ Survey & alignment requirements: ~lmm ]
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Calorimeter carbon frame
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2-cm of C (0.5 mm thick) at the front and
back of the crystals

PMT
assembly
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Easy disassembly of PMT block
with one long single captive screw
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Carbon frame: impact on energy resolution and efficiency

Energy resolution in PIoWO4 calorimeter
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1.2% (ideal case) to 1.6% at 10 GeV
with Imm of air between crystals

Longitudinal energy deposition in PbWO4 calorimeter

Mo gap, 10GeV

—— 1mm air gap, 10GeY

1imm carbon gap, 10GeV

Energy deposition [%]

100

o
(=]

(2]
=]

40

20

More than 97% of energy collected after 22 X,

400

No Gap, 10GeV eleciron
1mm Air Gap, 10GeV eleciron

1mm Carbon Gap, 10GeV electron

350

FWHM

mean : 1.00e+01 + 2.37e-03 GeV

~1.15% (FWHM/E)

: 0.115 GeV

300

FWHM

mean : 9.97e+00 * 2.03e-03 GeV

: 0.164 GeV

~1.64%

250

mean : 9.86e+00 t 3.13e-03 GeV
FWHM : 0.263 GeV

~2.67%

200

mean values are from gaus fit.

150

100

50

.

8.8

9 92 94 96

Cumulated energy deposition in PlrJWO4 Calorimeter

brene| ——— mm air gap, 10GeV

No gap. 10GeV

—— Imm carbon gap, 10GeV

2

4

g

]

10

12

14

16

18 20 22 24

X,

9.8

10 102
Energy [GeV]

16



Radiation Environment

<<picture : Geant4 simulation>>

Target
chamber

Beam direction

Beam direction

Simulation geometry contains:

- Liquid hydrogen target(red), and its chamber
- NPS(blue & green)

- Beam-pipe

- Sweeping Magnet(SM)(0.3T-m)

Sweeping magnet :

- Reduces the electromagnetic backgrounds
— Reach smaller angle

— Tolerate higher luminosity




Dose rate (rad/h)

Target
Radiation environment

Radiation dose at 4 m distance (1 uA current on 10cm LH2 target)

1A beam in 15cm Liquid hydrogen target
104 (approximate luminosity : ~2x 1036cm™2%s71)
NPS placed 4m away from the target

‘ous After about 50kRad, crystals are expected to be
"'"'*u." Magnet OFF in need of curing

Sweeping magnet :
Magnet ON

o e - Reduces the dose rate about an order or
more of magnitude

— Reach smaller angle

20 25 30 35 40 45 —> Tolerate higher luminosity
Angle (degrees)
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PbWO, Crystal Specification Categories

* Visual
- Defects such as chips, scratches, discoloration, chemical films, chamfers

* Geometry

- Tolerances, planarity, perpendicularity, chamfers, surface
e Optical Properties

- Transmittance (L, T), Light Yield, decay time
* Radiation hardness

- Induced absorption, recovery

PbWO, Crystal Testing Facilities



PbWO, Crystal Testing Facilities

IPN'O rsay CUA Spectrophotometer with inteérating sphere

(NSF MRI) in dedicated crystal lab

Q0 Optical Transmittance (L/T) J Visual inspection

0 Radiation Hardness 0 Mechanical dimensions
O Optical Transmittance (L/T)
O Light yield and timing Stepper motor based setup |
O Chemical and surface analysis |

Temperature controlled dark box

O Irradiation, Xray

- 222TBq Cogq source
- Vary the distance from the source
to change the dose rate
- Can simultaneously irradiate 9 crystals




PbWO, - Example Surface Quality

O Typical crystal surface quality

Measurements:
scanning microscope in
collaboration with VSL

» Scratches applied in a well-defined manner may benefit crystal
properties

O Looking deeper into defects: SICCAS 2017 crystals

)
|
0

» Defects result in high, but non-uniform light yield 1



PbWO, - Example Optical Quality

O Two Vendors: SICCAS (China) and Crytur (Czech Republic)

O In general, distribution of SICCAS crystal properties are broader
than those of Crytur crystals — not as uniform

Visual properties of crystals
correlated with optical ones
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[rradiation and Curing Tests

Radiation hardness measurements

"

Strong %°Co source (3000 Cu)
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Transmittance

[rradiation and Curing Tests
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i Cured after irraditaion 30 Gy
(at ~1Gy/min)
Cured after irraditai L. :
o Radiation damage recovered with
ok ‘J‘ﬁ a few hours of blue light curing
-
60
s0f- Blue LED optical bleaching
: - - - before curing
40
305_ | — IR for 2hrs
205‘ - - - before curing
10
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Energy resolution of prototype

NPS Prototype
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More details can be found in GlueX-doc-3590, GlueX-doc-3998, V. Berdnikov, A.Somov, J. Crafts



Summary

* DVCS access to the GPDs
* DVCS experiments in Hall C will exploit vast kinematic region
and cross check Hall A, CLAS, HERMES and COMPASS data
* NPS is needed in Hall C in order to perform the DVCS experiment
* NPS construction is in progress
* Assembly and tests at Jlab can start from September 2020



Spin — off: NPS prospects Glass Scintillators

O Glass scintillators being developed at VSL/CUA/Scintilex — optical properties
comparable or better than PbWO,,

» Preliminary tests on radiation damage look promising

» Ongoing optimization work




