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Outline

• Deeply Virtual Compton Scattering(DVCS) for GPDs

• Neutral Particle Spectrometer(NPS) for DVCS experiments in Hall C

• NPS simulations and crystal optical properties
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Form Factors:
via elastic scattering

-charge & magnetization
spatial distribution

Parton distribution:
via deep inelastic scattering

-Longitudinal momentum 
& helicity distribution of partons

Generalized Parton Distributions:
via deep exclusive reactions

-Transverse position distribution of partons
to longitudinal momentum

Generalized Parton Distributions
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Deeply Virtual Compton Scattering
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At high 𝑄2, DVCS amplitudes can be factorized into 2 parts 
«Hard Part» : Perturbatively calculable
«Soft  Part» : Nucleon structure  Parameterized by GPDs



Deeply Virtual Compton Scattering
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Bethe-Heitler (BH)DVCS
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DVCS process and BH process entangle Need to separate each term to extract the GPDs



Deeply Virtual Compton Scattering
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Calculable
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At fixed 𝑄2 and ν = 𝑄2/(2𝑀𝑥𝐵)

Deeply Virtual Compton Scattering
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Calculable
from QED
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Jefferson Lab.

• Newport News, Virginia, USA

• 12 GeV continuous electron beam

• Hall A, B, C and D

- Each hall has different setups

- A : High momentum resolution

- B : High acceptance

- C : High momentum reach

- D : 12 GeV Photon beam
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<<Thomas Jefferson National Accelerator Facility>>



DVCS experiments in Hall C
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Need a full kinematic region to better understand
the GPDs

<<Kinematic region accessible by JLab 11GeV beam>>

Highest precision data in the kinematic domain 
accessible with a 11GeV beam

- Reach higher 𝑄2

: further test the 𝑄2 dependence of the observables
- Different beam energies

: separate DVCS 2and Interference term
- Reach lower value of 𝑥𝐵

: Cross-check with CLAS, CLAS12 and COMPASS



Neutral Particle Spectrometer(NPS) in Hall C
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SHMS

HMS

electron beam

target

NPS

HMS : High Momentum Spectrometer
SHMS : Super High Momentum Spectrometer

 Neutral Particle Spectrometer replaces 

one of the Hall C focusing 

spectrometers in the experiments

Hall C focusing spectrometers

 HMS (existing 6 GeV era)

 Has been recommissioned for 12 GeV



10cm LH2 
target

Deflection 
magnet

NPS

HMS

Electron beam

, p0

e-

Trigger: HMS, HMS+NPS

HMS: 1 MHz (max)

NPS: 86 MHz (max)

In DVCS: 
HMS detects scattered electrons
NPS detects neutral particles

Experimental Technique

NPS cantelevered off SHMS platform NPS on SHMS platform

Detector
Detector

Magnet

Magnet

NPS angle range: 25 – 60 degreesNPS angle range: 5.5 – 30 degrees

The Neutral Particle Spectrometer (NPS) is envisioned as a facility in Hall C, 

utilizing the well-understood HMS and the SHMS infrastructure, to allow for 

precision (coincidence) cross section measurements of neutral particles (g and p0). 

PbWO4NPS

Global design of a neutral-particle spectrometer between 5.5 and 60 degrees 

consists of a highly segmented, crystal-based electromagnetic calorimeter 

preceded by a sweeping magnet

Neutral Particle Spectrometer 
(NPS)

 NPS angle reach between 5.5 and 30 degrees

 NPS allows for precision (coincidence) cross section 

measurements of neutral particles ( and p0). 



 HV distribution bases with built-in amplifiers for operation in a high-rate 

environment 

 ~25 msr neutral particle detector consisting of ~1080 PbWO4 crystals in a

temperature-controlled frame including gain monitoring and curing systems –

outer layers of 30x36 crystal matrix only to catch showers

 Essentially deadtime-less digitizing electronics to independently sample the 

entire pulse form for each crystal – JLab-developed Flash ADCs

 A beam pipe with as large critical angle as possible to reduce beamline-

associated backgrounds – only a small section needs modification

 Cantilevered platforms off the SHMS carriage to allow for remote rotation (in 

the small angle range), and platforms to be on the SHMS carriage (in the 

large angle range)

 0.3Tm  sweeping magnet allowing for small-angle and large angle 

operation at 0.6 Tm. The magnet is compatible with existing JLab power 

supplies.

Neutral Particle Spectrometer(NPS)



Basic geometry of NPS and HMS at small angles
• Minimum separation angle = 23.5 degrees
• Effect of the NPS fringe field is around the location of the HMS vacuum snout, 

before Q1 

(courtesy Paulo Medeiros)
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Target 
chamber

Sweeping
magnet

Calorimeter

Out-going
Beam-pipe

Beam
direction

Highest luminosity(~1038𝑐𝑚−2𝑠𝑒𝑐−1) of DVCS ever before
with smallest angle(for the high 𝑄2 data) possible
- Creates big amount of background to the calorimeter
 Introduce sweeping magnet to reduce the background

Sweeping Magnet

Supported by NSF MRI 
1530874: CUA (lead), OU, ODU

NPS magnet in test lab – ready for mapping



Back view

 30x36 (1080) PbWO4 crystals (2x2x20 cm3)

 Hamamatsu R4125 PMTs

 Custom-made active bases

 Crystals placed in a 0.5 mm-thick carbon 
frame to ensure good positioning

 PMTs accessible from the back side to 
allow maintenance

 Calibration and radiation curing with blue 
LED light though quartz optical fiber
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Calorimeter frame:

Survey & alignment requirements: ~1mm

Back view

Front view

Calorimeter
IPN-Orsay

+ NSF MRI 1530874: 
CUA (lead), OU, ODU



PMT 
assembly

2-cm of C (0.5 mm thick) at the front and 
back of the crystals

Easy disassembly of PMT block 
with one long single captive screw
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Calorimeter carbon frame



• 1.2% (ideal case) to 1.6% at 10 GeV
with 1mm of air between crystals

• More than 97% of energy collected after 22 X0
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Carbon frame: impact on energy resolution and efficiency



Radiation Environment
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Simulation geometry contains:
- Liquid hydrogen target(red), and its chamber
- NPS(blue & green)
- Beam-pipe
- Sweeping Magnet(SM)(0.3T·m)

Beam direction

Beam direction

SM

Target 
chamber

SM

Beam-pipe

NPS

NPSTarget 
chamber

Beam-pipe
<<picture : Geant4 simulation>>

Sweeping magnet : 

- Reduces the electromagnetic backgrounds
 Reach smaller angle
 Tolerate higher luminosity
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1μA beam in 15cm Liquid hydrogen target
(approximate luminosity : ~2× 1036𝑐𝑚−2𝑠−1)
NPS placed 4m away from the target

After about 50kRad, crystals are expected to be
in need of curing

Sweeping magnet : 
Reduces the  Reach smaller angle
 Tolerate higher luminosity

SM

NPSTarget 
chamber

Beam-pipe

Radiation environment

Sweeping magnet : 
- Reduces the dose rate about an order or 

more of magnitude

 Reach smaller angle
 Tolerate higher luminosity



PbWO4 Crystal Specification Categories

• Visual

- Defects such as chips, scratches, discoloration, chemical films, chamfers

• Geometry

- Tolerances, planarity, perpendicularity, chamfers, surface

• Optical Properties

- Transmittance (L, T), Light Yield, decay time

• Radiation hardness

- Induced absorption, recovery
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PbWO4 Crystal Testing Facilities



 Optical Transmittance (L/T)

 Radiation Hardness

60Co (3000 
Cu)

IPN-Orsay
Transverse transmittance measurements

PbWO4 Crystal Testing Facilities

Laboratoire de Chimie Physique (LCP)

- 222TBq Co60 source
- Vary the distance from the source

to change the dose rate
- Can simultaneously irradiate 9 crystals

 Optical Transmittance (L/T)

 Light yield and timing

 Visual inspection

 Mechanical dimensions

 Chemical and surface analysis

 Irradiation, Xray

CUA

Stepper motor based setup

Spectrophotometer with integrating sphere 
(NSF MRI) in dedicated crystal lab

Temperature controlled dark box

Source of Na-22 (two 0.511 keV photons 

back-to-back)

Trigger PMT

Wrapped crystal

PMT
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Measurements: 
scanning microscope in 
collaboration with VSL
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BTCP SICCAS CRYTUR

 Typical crystal surface quality

 Scratches applied in a well-defined manner may benefit crystal

properties

 Defects result in high, but non-uniform light yield

 Looking deeper into defects: SICCAS 2017 crystals

Bubble Deep 

scratches

Pits

PbWO4 - Example Surface Quality
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PbWO4 - Example Optical Quality

 Two Vendors: SICCAS (China) and Crytur (Czech Republic)

 In general, distribution of SICCAS crystal properties are broader 

than those of Crytur crystals – not as uniform  

Visual properties of crystals 

correlated with optical ones
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Strong 60Co source (3000 Cu)

Radiation hardness measurements

Irradiation and Curing Tests
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Blue LED optical bleaching

30 Gy
(at ~1Gy/min)

Radiation damage recovered with 
a few hours of blue light curing

Irradiation and Curing Tests



More details can be found in GlueX-doc-3590, GlueX-doc-3998, V. Berdnikov, A.Somov, J. Crafts






 NPS prototype 

HyCal (Hall B)

NPS Prototype  

3x3 array
bypassed amplifier

(𝐸)
𝐸

= 𝑝1
𝑝0

𝐸


𝑝2

𝐸

 Relatively good energy resolution.
 Consistent with Hall B HyCal, 

constructed with SICCAS crystals

HyCal
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Energy resolution of prototype



Summary

• DVCS access to the GPDs

• DVCS experiments in Hall C will exploit vast kinematic region 

and cross check Hall A, CLAS, HERMES and COMPASS data

• NPS is needed in Hall C in order to perform the DVCS experiment

• NPS construction is in progress

• Assembly and tests at Jlab can start from September 2020
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 Glass scintillators being developed at VSL/CUA/Scintilex – optical properties 
comparable or better than PbWO4

 Preliminary tests on radiation damage look promising

 Ongoing optimization work

Spin − off: NPS prospects Glass Scintillators


